

Remote Control of a Humanoid Robot Arm

H. Pérez Pérez

University CEU San Pablo, Madrid, Spain, h.perez10@usp.ceu.es.

Abstract

This project presents the implementation of a remote-control

interface for a 3D-printed humanoid arm designed by Youbonic.

The focus of this project was setting up a real-time remote-control

interface using Blynk, an IoT platform that provides a web

interface that allows for remote control of IoT devices, for the

robotic arm and allows the microcontroller to connect through

the internet to it. Blynk's interface can easily be used to execute a

series of predefined gestures such as the one used on this project

demo, pointing with the index finger.

1. Introduction

The emergence of remote operation within the Internet of

Things (IoT) showcases a substantial potential for

enhancing a diverse array of fields, spanning from intricate

surgical procedures and hazardous industrial settings to

extraterrestrial exploration and disaster response

initiatives. Great examples of such use cases in the medical

field would be the remote operation of the da Vinci®

Surgical System [1], allowing a specialist to perform

operations without having to be physically in the operating

room; or providing more advanced medical support in rural

areas, such as performing a remote echography [2].

Another great example within the medical field is the

CyberKnife[3], a device capable of performing stereotactic

surgery (Radiation therapy mainly used to slow the growth

or destroy tumors that are unreachable through

conventional surgery).

Remote-controlled arms enable a multitude of practical

applications across other fields, such as the scientific and

emergency response fields. One notable example in the

scientific field is the development of telelaboratories [4],

where these remotely operated labs offer their services

through web interfaces, enabling researchers to conduct

experiments and manipulate the remote environment from

a distance, using multiple ways of interaction. In the

mentioned example, the system architecture permits any

external program to have access to almost every feature of

the telelaboratory, allowing for the design of experiments

that can be carried out either remotely or in person. In the

context of emergency response, these arms play a crucial

role, especially in scenarios like bomb disposal [5], where

their remote operation proves essential in averting potential

harm to human lives by providing a safe and controlled

means of handling dangerous materials and situations.

Another field in which robotic arms can be used is the

education field, serving as a platform in which to develop

and test out new concepts. In this context, the main goal is

to implement a web interface facilitating remote control of

a humanoid robotic arm, a 3-D printed arm designed by

Youbionics [6], configured in a previous project [7]. The

remote operation of this arm is achieved through the

integration of IoT technologies [8]: the robotic arm is

controlled through Blynk [9], an IoT platform explicitly

prepared to provide web interfaces and cloud infrastructure

for IoT devices.

2. Hardware

The arm design employed in this project is the same as the

one used in the previous iteration of this project. It consists

of a complete 3D-printed humanoid arm, whose

schematics were obtained from Youbionic. This humanoid

arm (as shown in Figure 1) is formed by shoulder, elbow,

forearm, wrist, and hand.

Figure 1. Humanoid Arm used on the project. Blue: hand and

fingers; Yellow: wrist articulation; Green: Forearm; Orange:

elbow articulation; Red: shoulder articulation.

The whole arm is operated by a total of 15 servos: One for

each of the main arm articulations (wrist, forearm, biceps,

and shoulder), providing the arm with four degrees of

freedom, as each servo provides motion in a single plane;

and another 11 servos for hand movement. In the instance

of the thumb, it operates via three servos, with two

facilitating the flexing motion of the finger, and the third

serving as the palm servo (abduction and adduction

movements). Conversely, each remaining finger achieves

flexion through two servos, mirroring the thumb's

arrangement. This implies that, akin to the arm servos, all

finger servos permit motion within a single plane, resulting

in two degrees of freedom for each finger. Notably, the

thumb stands out with three degrees of freedom because it

is actuated with an additional servo.

2.1. Background

This project is the continuation of a previous project where

the arm was calibrated and configured for in-person use.

The prior project placed a central emphasis on realizing

targeted arm movements, specifically, the action of

pressing down a button (illustrated in Figure 2) and

refining the imperfections found in the 3D-printed

components.

Figure 2. Depiction of the three movements (1→2 →3) that add

up to form the desired gesture.

2.2. Proposal

As mentioned earlier, the preceding project did not

incorporate remote control capabilities, as it did not

consider the remote operation of the arm within its scope.

This limitation stemmed from the utilization of a main

microcontroller, an Arduino board (Arduino Mega 2560

R3), lacking a Wi-Fi module. Consequently, once the code

was uploaded onto the board, it became fixed, with no

option for alteration without access to a computer capable

of loading code into an Arduino board.

To solve this limitation, the previous controller had to be

replaced with a new microcontroller with support for Wi-

Fi connection. A NodeMCU Lua Lolin V3 (Figure 3) was

selected to replace the previous Arduino Mega 2560.

Figure 3. NodeMCU board with integrated ESP8266 Wi-Fi

module.

The use of the "ESP8266 Core for the Arduino IDE" [10]

allowed for the seamless reuse and integration of the

previous code [11] into the NodeMCU board utilized in

this project, significantly streamlining the software setup

process for controlling the arm in the current project.

The hardware architecture remains the same as with the

previous project: The main microcontroller connects to a

PWM servo driver board, which generates the digital PWM

signals, according to the microcontroller directives, used to

control the servo position (Figure 4).

Figure 4. Through the PWM board, the servos can be controlled

using the function setPWM(); included in Adafruit’s library.

The arm is actuated using the following components:

• NodeMCU Lua Lolin V3 (ESP8266 MOD 12-F)

• Adafruit PWM/Servo driver board (PCA9685)

• 11 Micro Servos SG90 (finger and palm servos)

• 2 FeeTech Digital Servos FS5323M (wrist and

forearm joint)

• 2 FeeTech 15kg.cm Servos (elbow and shoulder

joint)

In order to control the arm through Blynk's web interface,

an internet connection to Blynk servers is required from the

machine used to access the web interface. Then, the arm

servos are controlled through a combination of a

NodeMCU board (Lolin Lua V3) and an Adafruit 12-bit

PWM/Servo driver board (refer to Figure 5).

Figure 5. Remote control diagram of the arm.

3. Integration

The primary objective of this project is to enable remote

control of a robotic arm (specifically, Youbionic's

humanoid arm) through the Internet, allowing for remote

operation from anywhere as long as an internet connection

is available. To achieve this, the initial step involved

integrating Blynk connectivity into the code, facilitating

the connection of our controller to Blynk servers, and

enabling remote function execution. Subsequently, the

code underwent modifications to provide simple and

extensive functionality through the Blynk web interface.

Finally, the code recycled from the previous project was

adapted to incorporate positional control for each servo,

enabling the arm to store and recall the current position of

each servo.

3.1. Blynk Connection

In the previous project, the Arduino Mega 2560 R3 served

as the controller. However, due to the internet connection

requirement of this project, it was necessary to find a

solution to connect the Arduino, a microcontroller lacking

a Wi-Fi module, to the Internet.

Two options were considered: the first involved attempting

a remote connection through a USB serial connection. This

would necessitate linking the Arduino board to a computer

running a now deprecated Blynk app, designed for boards

lacking Wi-Fi modules. While this option would have

provided a straightforward solution, the necessity for a

USB connection to a computer rendered it impractical for

biomedical applications of the arm. It also proved

unfeasible due to the lack of support for this connection

method in the current version of Blynk.

The second option, chosen for this project, involved

replacing the controller with one capable of internet

connectivity. The selected replacement was a NodeMCU

Lolin Lua v3 (ESP8266-12F). This board could connect to

the internet through the ESP8266 module, and with support

from the ESP8266 Core for the Arduino IDE, it is

configurable like any other Arduino board using the

Arduino IDE.

To use Blynk servers and interface, Blynk provides

libraries and code templates that substitute the normal code

in our MCU (Refer to Figure 6). These code templates

require the modification of specific parameters (Wi-Fi

credentials, Blynk dashboard info) according to the ones in

use for the project: The Wi-Fi credentials (ssid, and pass)

are those of the Wi-Fi the board will connect to; while the

template_id, template_name and auth_token refer to the

Blynk dashboard our MCU will be controlled from.

Figure 6. Code required for the NodeMCU board connection to

Blynk and servo control. Blue highlight: Dashboard data

provided by Blynk; Green highlight: Wi-Fi network

identification.

The connection between the NodeMCU board and the

Servo driver board, an Adafruit PCA9685 board (PWM

Servo driver), is performed through the I2C interface.

According to the documentation provided by the seller [12]

from which the NodeMCU was acquired, the pins that

should correspond to the I2C channels are pin D5 -

GPIO14(SCL) and pin D4 - GPIO2(SDA). However, this

pin setup doesn't work with the NodeMCU board used

(even though it is the documentation of said NodeMCU

board), and after investigating, the correct pins were found:

pin D1 - GPIO5 (SCL) and pin D2 - GPIO4 (SDA). The

final wiring connection between both boards is depicted in

Figure 7.

Figure 7. Diagram of the I2C connection between the

NodeMCU board and the Adafruit PCA9685.

3.2. Blynk Dashboard setup

Blynk's interface facilitates the creation of virtual pins

(Figure 8), enabling the board to read from or write to them

for data exchange over an internet connection.

Figure 8. Configuration panel of each Virtual Pin.

Accessible from the web interface, these virtual pins permit

remote monitoring and management of values from any

device with an internet connection. The Blynk dashboard

provides configuration options to determine the frequency

of information transmission to the board, allowing for

choices between sending data on release or continuously.

(Figure 9).

Figure 9. Top image: Blynk dashboard; Bottom image:

Configuration of the “Raise hand” widget of the Dashboard.

For the board to interact with Blynk servers and exchange

information, it's necessary to utilize the provided functions

"BLYNK_WRITE(VirtualPin)" and "Blynk.virtualWrite(

VirtualPin, value)". The former is invoked each time a

value is transmitted from the Blynk dashboard, with the

caveat that only the function whose VirtualPin aligns with

the configured virtual pin of the modified widget will be

called. The value can be retrieved from the param object

using param.asInt() (assuming the expected value is an

integer). In order to send information, the second function

is used, requiring the specification of the virtual pin to be

modified, followed by the desired value to be set.

In the code snippet provided (see Figure 10), functionality

is integrated into both widgets, namely Raise Hand and

Hand Position, within the pre-existing dashboard (as

depicted in Figure 9). The virtual pin associated with the

Raise Hand widget (V4) is read, and the obtained value is

used to adjust the hand to the specified angle.

Subsequently, this value is written to virtual pin V5, linked

to the Hand Position widget, thereby updating the hand's

position value on the dashboard.

Figure 10. Top: Function receiving a value from Blynk’s

dashboard and sending data back. Bottom: Function diagram.

3.3. Software Improvements

The code from the earlier project was designed for basic

gestures, lacking positional control for the servos. This

limitation was addressed by incorporating an array of 15

bytes, storing the current angle of all 15 servos after each

gesture (if the angle was modified). With this revised

configuration [13], during a movement, the arm initiates

from its current position instead of resetting to a starting

position before executing the desired movement (Figure

11).

Figure 11. Function that moves the wrist to a desired angle.

4. Conclusions

This project successfully achieved its goal by utilizing a

NodeMCU board in conjunction with Blynk, enabling

remote arm control through Blynk's user-friendly and fast-

to-set-up web interface, as demonstrated in the project

showcase [14].

However, the Blynk interface poses a restriction when

controlling the arm, making individual control of the arm

servos a laborious task. This limitation can be

circumvented by using predefined gestures, removing the

individual servo control from Blynk’s interface, and

leaving it as a gesture selector. Predefined gestures avoid

Blynk’s interface problem by having the parameters

required for each gesture locally stored, meaning that the

end user doesn't have to adjust each servo individually,

simplifying the experience.

A significant enhancement for this project could involve

the development of a standalone application dedicated to

remote arm control. While Blynk provides a viable

solution, it has its limitations. Achieving precise control

through Blynk's interface, as previously mentioned, would

be a tedious process. It involves implementing flow

controls to enable/disable immediate code execution.

These controls, combined with sliders for each servo,

would allow for maneuvering the arm into any conceivable

position via Blynk's web interface without requiring code

alterations.

The primary drawback with Blynk lies in both

compatibility and reliability. As a private company, Blynk

has the authority to discontinue support for a specific

controller type at its discretion. An illustrative example is

the cessation of support for devices utilizing the USB serial

platform to connect to Blynk, a solution that is no longer

viable for using Blynk's interface. Moreover, Blynk is

designed as a web interface, which, while convenient for

human use through its webpage, makes the solution nearly

impossible to integrate with any other independently

developed program. This characteristic makes Blynk

incompatible with any alternative software that could

potentially be employed to control the device.

References

[1] F. Richter, E. K. Funk, W. Seo Park, R. K. Orosco and M.

C. Yip, "From Bench to Bedside: The First Live Robotic

Surgery on the dVRK to Enable Remote Telesurgery with

Motion Scaling," 2021 International Symposium on

Medical Robotics (ISMR), Atlanta, GA, USA, 2021, pp. 1-

7, doi: 10.1109/ISMR48346.2021.9661536.

[2] Kurt Boman, Mona Olofsson, Johan Forsberg, and Sven-

Åke Boström.Remote-Controlled Robotic Arm for Real-

Time Echocardiography: The Diagnostic Future for Patients

in Rural Areas?. Telemedicine and e-Health. Mar 2009.

[3] Kilby, W., Naylor, M., Dooley, J.R., Maurer Jr, C.R. and

Sayeh, S., 2020. A technical overview of the CyberKnife

system. Handbook of robotic and image-guided surgery.

[4] R. Marin, P. J. Sanz, P. Nebot and R. Wirz, "A multimodal

interface to control a robot arm via the web: a case study on

remote programming," in IEEE Transactions on Industrial

Electronics, vol. 52, no. 6, pp. 1506-1520, Dec. 2005, doi:

10.1109/TIE.2005.858733.

[5] Narayanan, S. and Reddy, C.R., 2015. Bomb defusing

robotic arm using gesture control. International Journal of

Engineering Research and Technology, 4(02).

[6] “https://www.youbionic.com/”. Youbionic. (Consulted:

January 2024)

[7] H. Pérez Pérez. 2023. Control of a Humanoid Robot Arm.

[8] S. Fu and P. C. Bhavsar, "Robotic Arm Control Based on

Internet of Things," 2019 IEEE Long Island Systems,

Applications and Technology Conference (LISAT),

Farmingdale, NY, USA, 2019, pp. 1-6, doi:

10.1109/LISAT.2019.8817333.

[9] Seneviratne, P., 2018. Hands-On Internet of Things with

Blynk: Build on the power of Blynk to configure smart

devices and build exciting IOT projects. Packt Publishing.

[10] "ESP8266 core for Arduino". GitHub. (Consulted:

December 2023)

[11] “proyectos2_HumanoidArm”. GitHub. (Consulted:

December 2023)

[12] “NodeMCU Lua Lolin V3 Module ESP8266 ESP-12F”.

Az-delivery. (Consulted: December 2023)

[13] “proyectos3_RemoteArmControl”. GitHub. (Consulted:

December 2023)

[14] “Remote Operation of a Humanoid Robot Arm”. Github

Pages. (Consulted: January 2024)

https://www.youbionic.com/
https://www.youbionic.com/
https://github.com/esp8266/Arduino
https://github.com/hugoperezgi/proyectos2_HumanoidArm
https://www.az-delivery.de/en/products/nodemcu-lolin-v3-modul-mit-esp8266
https://github.com/hugoperezgi/proyectos3_RemoteArmControl
https://hugoperezgi.github.io/proyectos3_RemoteArmControl/

